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Abstract

A refined non-linear first-order global approximation theory of initially stressed multilayered composite shells is
developed. The material of each layer of the shell is assumed to be linearly elastic, anisotropic, homogeneous or fiber
reinforced. The transverse shear and transverse normal effects are included. It is also assumed that the well-known
three-dimensional partially non-linear Novozhilov’s strain—displacement relationships are valid. As unknown func-
tions, the tangential and transverse displacements of the top and bottom surfaces of the shell are selected. The paper
focuses on two computational models for solving the non-linear problems of prestressed multilayered shells, namely,
the axisymmetric deformation of initially stressed multilayered composite shells of revolution and non-axisymmetric
deformation of these shells. The joint influence of anisotropy, initially stressed state response, geometrical non-linearity,
transverse shear and transverse normal deformation response on the stress state of the shell is examined. It is shown that
neglecting the effects of anisotropy and geometrical non-linearity leads to an incorrect description of the stress field in
multilayered toroidal shells made of cord-rubber composites. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, considerable interest has been found in the concerned literature to substantiate the
geometrically non-linear theory of elastic multilayered composite shells and plates. In this context, there are
a number of monographs and survey papers indicated (Bogdanovich, 1987; Grigolyuk and Kulikov,
1988a,b; Libresku, 1975; Noor and Burton, 1990; Reddy, 1997), where rich references of the literature
dealing with similar problems to the ones in our study can be found. For some works addressing the
problem of multilayered composite plates and shells under initial stresses, and especially with application to
tires, the reader is referred to (Biot, 1974; Grigolyuk and Kulikov, 1988a,b, 1992; Kulikov, 1990, 1996,
2001; Noor et al. 1993; Sun and Whitney, 1976; Tanner et al. 1994).

Pneumatic tires are the most widely used composite structures of commercial importance today.
Pneumatic tires demand the careful investigation of their strength at the designing stage, which requires the
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development of mathematical models, computational algorithms and computer programs for tires under
different types of loading. It is necessary to emphasize that satisfactorily solving the strength problems of
pneumatic tires is only possible on the basis of a theory taking into account the spatial character of the
stress—strain fields, the effects of anisotropy and the geometrical non-linearity in tires modeled by multi-
layered shells of revolution with complicated shapes. The reference surface of such shells is formed by the
revolution of an arbitrary curve given on a plane by a discrete number of points that have coordinates with
random errors of measurement (Grigolyuk and Kulikov, 1982).

Early tire models based on elementary structural analyses are discussed in survey papers by Frank and
Hofferberth (1967), and Ridha (1980). So, it is not necessary to consider them here in detail. The modern
tire computational model on the basis of a composite shell theory was first elaborated by Brewer (1973). He
modeled tires by applying the geometrically non-linear Kirchhoff~Love theory of multilayered orthotropic
shells. Qualitatively new tire computational models based on the geometrically non-linear first-order
Timoshenko—Mindlin-type theory of multilayered anisotropic shells were developed by Grigolyuk and
Kulikov (1981, 1988b, 1993), Kulikov (1996), Kulikov et al. (2000), and Noor et al. (1987). However, in
these studies the transverse normal deformation response is not included.

Herein, the refined first-order global approximation theory of initially stressed multilayered anisotropic
shells is developed. In global approximation theories, global through-the-thickness displacement, strain or
stress approximations are introduced and as a result the multilayered shell is replaced by an equivalent
single-layer shell (Grigolyuk and Kulikov, 1988b; Noor and Burton, 1990). Consequently, the order of the
governing equations is independent on the number of layers of the shell. The simplest examples of these
theories are the so-called first-order shear deformation theories based on the kinematic Timoshenko hy-
pothesis (the linear distribution of displacements in the thickness direction).

The direct use of the traditional first-order global approximation theories for solving a series of im-
portant shell problems such as the contact problems is not always convenient. In these problems it is more
convenient to select as unknown functions the tangential and transverse displacements of the face surfaces
of the shell, since with the help of these displacements the kinematic requirement of no penetration of the
contact bodies can be fulfilled. Furthermore, the proposed approach strongly simplifies a formulation of the
non-linear strain—displacement relationships.

This theory is based on the refined kinematic Timoshenko hypothesis adopted for the displacement
vector. The governing equations of the theory of initially stressed multilayered anisotropic shells are ob-
tained by using the principle of the virtual work and partially non-linear Novozhilov’s strain—displacement
relationships. An outcome of this approach is that the equilibrium equations of the geometrically non-
linear elasticity theory are satisfied pointwise into the shell with an exactitude acceptable for the thin shell
structures.

On the basis of the proposed first-order global approximation theory, two computational models
for solving the axisymmetric and non-axisymmetric problems of initially stressed multilayered aniso-
tropic shells of revolution have been elaborated. The material of each layer of the shell is assumed to be
linearly elastic, anisotropic, homogeneous or fiber reinforced, such that in each point there is a single
surface of elastic symmetry parallel to the reference surface. The axisymmetric computational model is
based on the Newton—Raphson method and the incremental method. In the case of the non-axisymmetric
deformation of prestressed multilayered anisotropic shells of revolution the solution of the problem is
carried out in two steps. First, the geometrically non-linear problem of the axisymmetric shell deformation
on the basis of the first computational model is solved. Then, the geometrically linear problem for a
prestressed shell of revolution subjected to non-axisymmetric loads is solved. For this purpose, the un-
known functions and the external loads are expanded in the Fourier series in the circumferential coordi-
nate.

The several numerical examples are presented. These examples include some relatively simple problems.
Namely, the non-linear axisymmetric response of a cross-ply toroidal shell made of cord-rubber materials
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and subjected to inflation pressure; and the non-axisymmetric response of this shell subjected to inflation
pressure, and localized loading acting on the outer surface.

2. Elasticity theory of initially stressed multilayered shells

Let us consider the shell built-up in the general case by the arbitrary superposition across the wall
thickness of N thin layers of uniform thickness 4;. The kth layer may be defined as a three-dimensional
body of volume ¥, bounded by two surfaces S;_; and S, located at the distances J,_; and J;, measured with
respect to the reference surface S, and the edge boundary surface ; that is perpendicular to the reference
surface (Fig. 1). The full edge boundary surface Q = Q, + Q, + - - - + Qy is generated by the normals to the
reference surface along the bounding curve I' (with the arc length s) of this surface. It is also assumed that
the bounding surfaces S;_; and S; are continuous, sufficiently smooth and without any singularities. Let the
reference surface be referred to an orthogonal curvilinear coordinate system o and o,, which coincides with
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Fig. 1. Element of multilayered shell.
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the lines of principal curvatures of its surface. The z axis is oriented along the outward unit vector e; normal
to the reference surface.

The constituent layers of the shell are supposed to be rigidly joined, so that no slip on contact surfaces
and no separation of layers can occur. The material of each constituent layer is assumed to be linearly
elastic, anisotropic, homogeneous or fiber reinforced, such that in each point there is a single surface of
elastic symmetry parallel to the reference surface. Let foﬁ) be the initial stresses; p, and p; are the intensities
of the initial external loading acting on the bottom surface S, and top surface Sy in the o, o, and z co-
ordinate directions, respectively; g\¥, 'c]ﬁk) and ;;g’” are the intensities of the initial external loading acting on
the edge boundary surface € in the v, ¢ and z directions, where v and t are the normal and tangential unit
vectors to the bounding curve I' (Fig. 1). Here, and in the following developments, the index & identifies the
belonging of any quantity to the kth layer (k = 1, N) and indices « and f take the values 1, 2 and 3; and
indices i and j take the values 1 and 2.

Since the initial surface loads 7, 7, %, ¢\, 3 and initial stresses &
system and assuming the case of thin shells, we have

i’;; constitute the self-equilibrated

e the equilibrium equations of the three-dimensional elasticity theory for the kth layer:
105 1 oGy N o5'\%)
A,‘ 60(,‘ A]‘ 60(1 Oz
~(k ~(k ~(k
1 6‘7§3> + 1 6‘7(23) + 6‘7(33)
A] 6061 A2 6a2 Oz

+ 5 (0 —3)) + 28,5 +kal =0, (i #)),
(1)

+BiG\ + Boyy — kG, — kaosy =0,

where k; and k, are the principal curvatures of the reference surface; 4, and 4, are the Lamé coefficients
of the reference surface; B; = (1/414,)(04,/00;), (i # j);
¢ the boundary conditions for the transverse stresses on the top surface Sy:

7% =pr, (2)

e the boundary conditions for the transverse stresses on the bottom surface Sp:

~(1 ~_

Ji; =Py, (3)
e the equilibrium conditions for the transverse stresses at the layer interfaces S,:

gy;rl) = 553) = ?gzwa (n=1,N-1), (4)

where 7, are the initial interlaminar stresses;
e the boundary conditions on the edge boundary surfaces €;:

~(k) _ =k =(k) _ =k ~(k) _ ~(k

O-S*v) = qu )’ Gst) = q; )7 Oy =43 >’ (5)
where ), a0, 55? are the components of the initial stress tensor of the kth layer in the coordinate
system v, 1, z.

The boundary value problem for the prestressed multilayered shell is defined by setting the additional
loading p; , pi, ¢, q}k), qgk) (Fig. 1). As a result of this loading, the resulting stress state can be represented
as

k)r ~(k k
oy = oy + 0y, (6)

o

(k)

where ¢,; are the additional stresses of the kth layer.



G.M. Kulikov | International Journal of Solids and Structures 38 (2001) 4535-4555 4539

The principle of the virtual work for the prestressed multilayered thin shell can be written in the fol-
lowing form (Washizu, 1982):

N
Z///Zai;)régi?AlAzdaldoczdz—//Z(ﬁ: + py ) dul™ dS+//Z(ﬁ; + p, )oullds
k=1 o o

a<p
//Z o)) (Sul ) — du")dS — Z// T+ q)oul + (g + g du
n=1
+ (53( +‘]3 )6143 }dS 0, ()

where u(¥) are the components of the dlsplacement vector of the kth layer in the coordinate system o, oy, z
that are referred from the reference surface S; u®, uﬁk and u; % are the components of the displacement
vector of the kth layer in the coordinate system v, t, z; tl") are the interlaminar transverse stresses acting on
the layer interfaces S,, where n = 1, N — 1.

The three-dimensional partially non-linear Novozhilov’s strain—displacement relationships in the Lag-

range description for the multilayered thin shell will be (Grigolyuk and Kulikov, 1988b)
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In the expressions of tangential strains (8) only those non-linear geometrical terms that depend on @ and
@( ) are retained. The remaining non-linear terms are discarded.

The governing equations of the geometrically non-linear elasticity theory for the prestressed multilayered
thin shell can be derived by applying the principle of the virtual work (7). Substituting the strain—dis-
placement relationships (8) into Eq. (7), using Gauss’ theorem and taking into account Egs. (1)-(6), one
obtains the following variational equation:

3. [ [Srsaatame [ [0 -p)sivass [ [5(0-n)ouras
. ' s 5 -

//Z (r+1) n))sug(rr#l) _ (SE;;) _ ri”))Sug’”]dS
- z / / o) = g)aul + (o) — g)sul + (2 - g’ )aul|ds = o, ©)

where L) are the three-dimensional non-linear differential operators, corresponding to Novozhilov’s
strain—displacement relationships (8), which can be written as follows:
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where Zg) and sg‘ ) are the generalized transverse shear stresses.
Equating the coefficients of du(F) to zero, one can obtain the fundamental equations of the geometrically
non-linear elasticity theory of prestressed multilayered thin shells:

e the equilibrium equations for the kth layer:
LY=o, (11)
e the boundary conditions for the generalized transverse stresses on the top surface Sy:

N
S§3> = p:a (12)
e the boundary conditions for the generalized transverse stresses on the bottom surface Sp:
1 _
S5 =y, (13)
e the equilibrium conditions for the generalized transverse stresses at the layer interfaces S,:
s =W = (=T N-1), (14)
e the boundary conditions on the edge boundary surfaces €;:
k k
o =g, aV=q" =4’ (15)

Additionally, we should invoke the generalized Hooke’s law:
o = Yl + Y + Ll + el

ol = Cllel) + CHel) + CHell) + Al

o) = I+ CIY + ) + el

oA = Cle) + )+ el 1 Bl

okl = Cllell + Cll,

(k) _ (k) (k) (k) (k)
o3 = Cys 63 + Cs5'ep3,

(16)

where C") are the stiffness coefficients of the kth layer (£,m = 1,6).
So, we have all the fundamental equations (6), (8), (11)—(16) for finding the resulting stress state of the
prestressed multilayered anisotropic thin shell.

3. First-order theory of initially stressed multilayered shells

The first-order global approximation theory of multilayered shells is based on the linear approximation
for the displacement vector in the thickness direction
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ul) =N~ (2)v, + N*(2)v],
N (z) = (0y —2)/h,  N'(z) = (z— d0)/h,

where v, (o, %) and v} (o, o2) are the tangential and transverse displacements of the bottom surface S, and
top surface Sy; N~ (z) and N*(z) are the linear shape functions. The linear approximation (17) may be
considered as a refined Timoshenko hypothesis (for example, works by Grigolyuk and Kulikov (1988b) or
by Noor and Burton (1990), where as unknown functions, the displacements of the reference surface and
rotation components are selected). The advantage of the proposed approach is obvious, since with the help
of the displacements v, and v}, the kinematic boundary conditions on the face surfaces of the shell, and in
particular, the conditions of no penetration of the contact bodies can be formulated. Besides, this provides
a convenient way to express the non-linear strain—displacement relationships in terms of face surface strains
(Egs. (21) and (22)).

Substituting the displacements from Eq. (17) into the strain—displacement relationships (8) and varia-
tional equation (9), and taking into account that a shell is thin, the following equations of the geometrically
non-linear theory of prestressed multilayered shells are obtained:

(17)

¢ the equilibrium equations of the three-dimensional elasticity theory for the kth layer (10) and (11), where
we should set

g = ‘713 +/3( 033 +‘7§]§>)7 @<'k> =—N"(2)0; _N+(Z>9i+»
1 61)3 (18)
A Oo;

the boundary conditions for the generalized transverse stresses on the top surface (12);

the boundary conditions for the generalized transverse stresses on the bottom surface (13);
the equilibrium conditions for the generalized transverse stresses at the layer interfaces (14);
the natural boundary conditions on the edge boundary surface Q2:

ﬁi:%(v;—_vi_)’ 0 =k} —

(= )oor =0, (B —A7)ous =0, (S5—H3)ov =0, (19)

where HE:, HF and S% are the generalized stress resultants:

v vt

N 5
N A R ) A
S_1 k=1 v Ok_1
$:2A2@sz
k=1 k—1

and H‘J‘:, Hf, H j§ are the generalized loading resultants that are obtained from Eq. (20) by replacing the
stresses a‘,‘ , ‘, , 2‘3 by intensities of the external loads q‘, , qE , qg acting in the v, ¢, z directions,
correspondingly;

o the strain—displacement relationships

(20)

wzw@@+woq, by =N (2)E5 + N* ()],

(k) 1 2 2 (21)
€33 =Eyp= ﬁ3 +§ﬂ1 +§ﬁ2a

where £, E; and £, EY, are the tangential and transverse shear strains of the bottom and top surfaces

of the shell respectlvely
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1 _ 1 603
Ex=F=07  Bo=g(-v) O =hkv -2~

Note that the tangential strains afjk) are distributed over the shell thickness according to the linear law,

since the refined Timoshenko hypothesis has been adopted. As can be seen from Fig. 2, it is an acceptable
assumption for the thin shell structures. Really, better expressions for the tangential strains can be written
by using the quadratic approximation that are exact for the proposed non-linear shell theory, i.e.
. 1 2 . g

i =N (2)e; + N (@ +5 (@5“) . 8y =N (2)en, + N (2)ef, + 6170,
where the functions @,@ are defined by formulas (18). It is apparent that from the previous equations and
Egs. (21) and (22) follow that the coupling conditions sfll (80) = sfll )(80) = E; and 8§;v>e(5N) = .sf) (on) = Ej;
are satisfied; and the values of these strains will always coincide for the geometrically linear shell theory.

Multiplying the equations of the three-dimensional elasticity theory (11) by shape functions N~ (z),

N*(z), and integrating them across the shell thickness with account of the boundary conditions (12), (13)
and equilibrium conditions (14), six non-linear equilibrium equations of the initially stressed multilayered
thin shell in terms of stress resultants are obtained:

1 0HF 1 OHj;

: 1 L
o= Bi(Hy — Hy ) + 2B H kS5 F o PapE =0, (i £)),

&

A,‘ aOC,' Aj aOC/
1055 1 0S4

1
— By — B4 BSS + BSy;, — kiH, — kHs, :|:sz3 +p; =0,

(23)
Al 6061 A2 atxz

Fig. 2. Distribution of tangential strains &;; and ¢; over shell thickness.
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where H, S5 and Py are the generalized stress resultants, and 7,3 are the classical stress resultants:

io?

N S N 3
me= [Nt s [ v
k=1 7B k=1 781

= A
P,~3 = / S; dz Tu3 = / g, dz.
k; Bt P k; 1 :

In order to obtain the constitutive equations for the stress resultants, the equations of the generalized
Hooke’s law (16) should be used. Unfortunately, such approach cannot correctly describe the shells made
of incompressible materials or nearly incompressible materials having Poisson’s coefficients v,z ~
0.5(o #£ B). To avoid this contradiction, we should simplify the equations of the generalized Hooke’s law
for the tangential stresses (16) omitting the underlined terms. It is an acceptable assumption for thin shell
structures.

Indeed, consider the orthotropic layer of the shell whose axes of symmetry oc(f), oc(zlf) and z do not coincide
with the coordinate directions o, o, and z. In axes of symmetry, the equations of the generalized Hooke’s
law will be

(24)

w _ 1w W O e ) R w Y w
) = — =011 — —o Oy — — Oaq Ey = —— =0y +—5 Oy — — 033, (25)
11 E§k> 11 E;k) 22 E;k) 33 22 Egk) 11 Egk) 22 E_gk) 33
(k) (k)
(k) Yis, ) Va3 (k) ()
&3 = — (k) Oy — (%) Oy + (k) 033, (26)
Ey E, ES
w_ 1w w_ 1w w _ 1w
23 = i %23 ey = G oy Ery = G Oy (27)
23 13 12

where Eik), Egk) and Eg” are the elastic moduli in the oc(llf), ocgf') and z directions; Gg?, Gﬁ? and Gg’;) are the shear
moduli. From reasons of symmetry, we have v(;;) JEW = v;;;) /E;jk> (a #£ ).
As a shell is thin, with an exactitude acceptable to engineering calculations it is possible to accept the

following assumption: 0(3? < ailff,, 0(212,. Neglecting the transverse normal stress in Eq. (25), and solving for
the tangential stresses, we find

( 6 (k) 6 (k) k ) (k ) (k
01';/ = le 8(1/1/ + ng ngz/a ‘75/; = le)ﬁyf/ + sz)‘qg/%/v
(k) (k) (k) (k)
o — £y o = £, ol = Vi E; (28)
= (k) (k) 22 (k) (k) * 12— (k) (k) *
L —viyvy 1 —viyvy L —viyvy

Substituting the tangential stresses aﬁ’ff, and 0(2]2, into Eq. (26), and solving for the transverse normal stress,

we obtain

(k) __ (k) (k) (k) (k) (k) (k)
033 = Oi36pp + Oy éyy + 03833,

(k) (k) (k) (k) (k) (k)
Q(k) _ Vi3 HVivy E® Q<k> _ Vo3 TV E® Q(k) —E® (29)
13 — ) (k) 3> 23 — ) (k) 3> 33 — L3
L=y L=y

In coordinate directions oy, o, and z, the equations of the generalized Hooke’s law (27)—(29) can be
represented in the following form:
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(k) __ (k)

oy =Cy ‘511 + C12 522 + C16 612 )
(k) (k) (k)

0y =Ci, 811 + sz 822 + C26 512 ) (30)
(k) _ C(k Ck) C

01 =L 811 + Gy 822 + Ces 812

The remaining equations of the generalized Hooke’s law are given by formulas (16). The components of the
stiffness matrix C[(fn in new axes can be found, for example, in paper by Kulikov and Plotnikova (1999).

It is a well-known fact that in the Timoshenko—Mindlin-type shell theory the equations of the gener-
alized Hooke’s law for the transverse shear and normal stresses are not satisfied pointwise, but can be
satisfied in an integral sense. Therefore, according to formulas (16) and (24), the following integral equa-
tions must be fulfilled:

N Ok
(k) (k) (k) (k) (k)
E / (‘733 —Ciyey — C23 22 C%3 33 —Cy 812)dz =0,
k=1 k-1
W A0 AW
E /a (‘723 — G ey — Cys 63 )Ni(z)dz =0, (31)
k=1 k—1

N o
S> [ (ol - il - el ~o.
k=1 7 ok-1

With the help of the constitutive Egs. (30) and (31), strain—displacement relationships (21) and formulas
(24), we can obtain the constitutive equations for the stress resultants of the non-linear first-order global
approximation theory of initially stressed multilayered anisotropic shells. However, due to their intricacy,
these will not be displayed here.

Now, we have an opportunity to satisfy pointwise the equations of the three-dimensional elasticity
theory (11) exactly for a plate and approximately for a shell with an exactitude acceptable for thin shell
structures. Integrating the Eq. (11) across the shell thickness from J, to z and using the boundary condi-
tions on the bottom surface (13) and equilibrium conditions at the layer interfaces (14), one can obtain the
expressions for the generalized transverse stresses

1049 1 04w

(k) — ii Y (k) (k) (k) (k) . ;

s = f——f———Bi(/l-. —A»»)—ZBA“ — kiR, ,

S13 pz A aai A aOC] i Jj JErij i3 (l 7&]) (32)
w_ 1 orfy 1 0rY ®) ®) ®) ®)

S33 =Py — — —BiR)y — BoRyy + ki Ayy + ko Ay,

A1 6061 A2 aOCQ
where A<k and RY 5 are the new stress resultants depending on the transverse coordinate:

- On ¥4 O z
:Z / ol dz + / oWdz, R _Z / sWdz + / sWdz. (33)
—1 o Se1 Ok—1

n

It is important to note that from Egs. (23), (32) and (33) follow that the boundary conditions for the
generahzed transverse stresses on the top shell surface (12) and are also satisfied, since /1 (5N) ;+H
and RY (dy) = S5 + S5

Flnally, from formulas (18), we can find the transverse stresses

k k ~(k k k k
oo (0 +8), o =50, (34

So, all governing relationships of the refined non-linear first-order global approximation theory of
prestressed multilayered anisotropic thin shells have been derived.
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4. Axisymmetric deformation of initially stressed multilayered shells of revolution

Let us consider the prestressed multilayered anisotropic shell of revolution with uniform circumferential
properties subjected to axisymmetric loading. It is assumed that the initial stresses Ei’;) are independent of
the circumferential coordinate. In this case, the shell will deform axisymmetrically remaining as a body of
revolution, and the displacements of the face shell surfaces v, v3 and v will depend only on the meridional
coordinate s.

Let Y be the state vector given by
_ _ _ _ _ _ T
Y= ||H11’H1+1’H12>H1J57S137S1§7Ul’UTavzvv;v%aU;H ) (35)

where the superscript T denotes transposition. Taking into account the relationships (22), (23) and (35) and
constitutive equations, we can write the governing system of non-linear differential equations in the fol-
lowing vector form:
dy
ds
The boundary conditions of the axisymmetric deformation problem according to formulas (19) can be
written as follows:

Yﬂ(si)gn + Yn+6(si)(1 - gn) - 07
(™) lvs + Yso(sT)(1 = buss) =0,

where ¥, and Y, ¢ are the components of the state vector Y; ¢, and /¢, 4 are the boundary coefficients, which
may take the values 0 and 1, and define any homogeneous static or kinematic boundary conditions at the
left edge s = s~ and right edge s = s of the shell, where n = 1,6.

The non-linear boundary value problem (36) and (37) can be reduced to a sequence of linear boundary
value problems by using the Newton—Raphson method as

dY[m+l]
ds

The linear boundary value problem (37) and (38) is solved by application of the discrete orthogonal-
ization method used for solving the multilayered composite shells of revolution by Grigolyuk and Kulikov
(1981). The process starts with Y = 0, and we carry on it until the inequality

me’ (Y[[erl] _ Yv([m])/yvé[m+l]

F(s,Y). (36)

(37)

=A(s, Y") - Y 4 G(s, YIM). (38)

<é&

will be satisfied for a priori chosen parameter ¢, where ¢ = 1,12.

As a numerical example, we consider a linear response of a three-layered composite plate (Fig. 3). It is
assumed that each layer possesses a single plane of elastic symmetry parallel to the middle plane. The plate
is simply supported on the ends s = 0 and s = ¢, and is subjected to the normal loading pi = gsinns/¢. Let
us consider the class of problems known as a cylindrical bending, where all components of the displacement
vector, and the strain and stress tensors are dependent only on the s and z coordinates. The material
characteristics of each layer were taken to be those typical of a high modulus graphite-epoxy composite
(Pagano, 1970) EL = 25E, ET = EZ = E, GLT = GLZ = OSE, GTZ = 02E, VT = VLz = V17 = 025, where
the subscripts L, T and Z refer to the longitudinal, transverse and thickness directions of the individual ply
and E = 6896 MPa. Let the ply thicknesses and ply orientations, respectively, be (h/4,h/2,h/4) and
(y,—7,7), where y is measured in the clockwise direction from s to the fiber direction. Fig. 4 shows the
distribution of the transverse shear stresses in the thickness direction at the cross-section (at s = 0) for the
ply angle y = 30°, and the dimensionless parameter ¢ =4 and ¢ = 10, where ¢ = ¢/h. The solid curves
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Fig. 3. Cylindrical bending of three-layered anisotropic plate.
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display the results obtained by using this theory, while Pagano’s exact solution is denoted by curves marked
by @. It is seen that the proposed theory gives acceptable results for the moderately thick composite plates.

As the second numerical example, we consider a relatively simple problem of the non-linear axisym-
metric response of the multilayered anisotropic tire. For the sake of simplicity, the tire is modeled as a four-
layered anisotropic toroidal shell (so-called bias-ply tire), which has a circular cross-section (Fig. 5). The
shell is subjected to uniform inflation pressure p; = —¢g, where ¢ = 0.15 MPa. The material characteristics
of the layers are taken to be those typical of cord—rubber composites (Kulikov, 1996): Ey = 510.45 MPa,
ET = EZ =691 MPa, GLT = GLZ =2.33 MPa, GTZ =1.77 MPa, VLT = VLZ = 046, V17 = 0.95. Let the
geometrical characteristics of the inner surface of the shell are R; = 50 mm and Ry, = 250 mm; thicknesses
of the shell and plies are 2 = 4.8 mm and 4, = 1.2 mm; ply orientations are y, = (—l)k_ly, where y = 52°
and k& = 1,4. The tire is assumed to be rigidly clamped at the rim (at yy = +120°).

This non-linear problem can be also solved by using the incremental method (Washizu, 1982). Let the
tire be loaded to 0.15 MPa inflation pressure in five load steps, i.e., ¢, = 0.03n MPa, where n = 1, 5. At each
of the load steps, the geometrically linear problem for a prestressed shell of revolution is solved. It should
be noted that the effects of the meridian stretching and thickness variation under the new geometry
computation were not taken into account. Other feature of this approach is the non-conservative character
of the pressure loading, since the displacements are referred at each of the load steps from a new reference
surface.

The numerical results presented in Fig. 6 have been obtained by using the Newton—Raphson method
(curves marked by @) and the incremental method (the solid lines with various values of the load parameter

0

Fig. 5. Four-layered composite toroidal shell subjected to inflation pressure.
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q). Note that only four iterations were required for finding the solution of the non-linear problem with the
given accuracy ¢ = 1074, Additionally, in Fig. 4, the solution of the geometrically linear problem is given
(curves marked by #). The distribution of the stress components in the thickness direction is shown for the
middle cross-section (at iy = 60°). It is seen that both numerical solutions of the non-linear problem lead to
similar results. Note that transverse shear stresses o3 and ¢,; obtained by using the Newton-Raphson
method, and incremental method do not vanish at the inner surface of the shell and are discontinuous at the
layer interfaces. It can be explained by allowing for the non-linear terms in formula (34). However, this
effect is appreciable only for the finite deflection problems.

As already said, two layers of this cord-rubber composite are put together with +y fiber orientations
with respect to the meridional direction. Each layer separately would try to exhibit the shear coupling
behavior. Their shearing action would be in opposite directions due to their opposite fiber orientations. The
mutual interaction between the layers would try to restrict in-plane shear motions and as a result would
generate transverse shear stresses o3 that are essential in pneumatic tires. It is apparent that in a case of
using the traditional non-linear theory of laminated orthotropic shells we will lose this effect. ' In this
connection let us pay attention to the same order of the transverse shear stresses ¢;3 and a,; that it is
noticeable, namely, for the non-linear problem. It points to an essential influence of anisotropy and geo-
metrical non-linearity on the stress field in cord-rubber toroidal shells.

5. Non-axisymmetric deformation of initially stressed multilayered shells of revolution

Consider the initially stressed multilayered anisotropic shell of revolution with uniform circumferential
properties subjected to non-axisymmetric loads pf, p5 and p5, acting on the bottom and top surfaces in the
s, @ and z directions, correspondingly. As in the previous section, we will assume that the initial stresses,
55;;) are independent on the circumferential coordinate ¢.

Let us suppose that the state vectors X, Z and loading vectors P, Q defined as
_ _ _ _ _ _ _ _ _ _ T
X = ||H11,Hﬁ,sz,HzJa,HB,H;;,SB,S:;,P13, Tl3avl ,UT,U3 7U;’EU’ETl’EZZ’EL’E137EB7E331ﬁh 91 ’QTH s
_ _ _ _ _ _ — T
7 = ||H127H127H237H;47S237S;37P237 T237 Uy, U;’EIZ’ETZ’EZMESF}?ﬁZ? 92 s 9;”

P= oot ot Q= el
(39)

are the periodical functions from the circumferential coordinate ¢, which can be expanded in the Fourier
series in this coordinate

X P = 3 (X,(5). Pufs)]cosno + (X, (s), P_,(s)] sinnp}.
Y (40)
[Z,Q] = Z{[Zn(s), Q,(s)]sinng + [Z_,(s),Q_,(s)]cosnp},

where E;, E% and Es; are the tangential, transverse shear and transverse normal strains, correspondingly;

S and Ps are the generalized stress resultants having in this section a simplified form

! The joint influence of anisotropy and geometrical non-linearity on the stress—strain state of composite shells was analyzed by
Grigolyuk and Kulikov (1981), and by Patel and Kennedy (1982).
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where r is the normal distance from the rotation axis to the reference surface.

Substituting the components of the state vectors and loading vectors from Egs. (39) and (40) into the
equilibrium equations (23), constitutive equations and formulas (41), and separating variables on sines and
cosines, one can obtain two systems of linear differential equations

dy, =F,(s5Y,Y.,), (n=0,1,...), (42)

ds

% =F_(5,Y,Y.,), (n=12..), (43)
s

where Y, and Y_, are the vectors corresponding to the nth Fourier harmonic defined by

T

— - + — e e e —
Y, = HHllﬁn’Hllﬁn’HIZ,n7H12,n7S]3,177Sl3,n7Ul,n’Ul‘n’DZ«,n’UZﬁn’v&n’Uln ; (n=0,%£1,..). (44)

The systems of the differential Eqs. (42) and (43) should be solved together, because for anisotropic shells
of revolution the two sets of symmetric and antisymmetric displacements, strains and stress resultants,
associated with each Fourier harmonic (40), are coupled. So, the order of the governing system is redoubled
and equals 24. This strongly complicates the solution of the non-axisymmetric problem for multilayered
anisotropic shells. There are not such difficulties for multilayered orthotropic shells, where the similar
systems of the differential Eqgs. (42) and (43) are not coupled and can be solved by more simple methods.

The boundary conditions of the non-axisymmetric problem can be written as follows:

Ynﬁm(s_)gm + Yn,m+6(s_)(1 - fm) = 07

45
)]rl,m(s+)‘€nl+6 + Yn,m+6(s+)(1 - €m+6) = Oa (m = 1,671’[ = Oa j:], .. ')7 ( )

where Y, ,, and Y, ;¢ are the components of the state vectors Y,; ¢,, and ¢,,.¢ are the boundary coefficients,
which may take the values 0 and 1.

So, the two-dimensional boundary value problem has been reduced to a sequence of the single-dimen-
sional linear boundary value problems (42)—(45), which can be solved by using the above-mentioned dis-
crete orthogonalization method.

As a numerical example, we consider the second tire problem concerning the non-axisymmetric response
of an anisotropic tire subjected to inflation pressure and normal localized loading (Fig. 7). Let a four-
layered anisotropic toroidal shell with the above geometrical and mechanical characteristics be subjected to
uniform inflation pressure ¢ = 0.15 MPa. This geometrically non-linear problem can be solved on the basis
of the previous computational model. Then, the initially stressed shell is subjected to the normal localized
loading (simulating the contact loading) distributed as follows: p; = —py [1 — (o/ Aﬂ if —=3.5<s<3.5mm
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Fig. 7. Four-layered composite toroidal shell subjected to inflation pressure and normal localized loading.

and —4 < ¢ < 4, where py = 0.3125 MPa and 4 = 0.4. As already mentioned, in this approach the dis-
placements are referred from a new reference surface which is computated by using the following as-
sumptions: the effects of the meridian stretching and thickness variation are not included. Besides, the fast
Fourier transform was used for the computation of the Fourier harmonics p;, and p; _, from Egs. (39) and
(40).

Figs. 8 and 9 show the distribution of the transverse stresses in the thickness direction at the various
cross-sections of a tire. The solution presented here was obtained with at least 30 terms in each Fourier
series and compared to results obtained using less terms. In most cases, there was a negligible difference
between the 25-term solution and 30-term solution. As expected, the influence of anisotropy is important
both inside and outside the contact zone. We can see that the symmetry conditions are not satisfied here
especially at ¢ = +22° and +24°, i. ., nearer to the contact region.

It should be noted that due to the essentially non-uniform distribution of the transverse shear stresses o3
and 0,3 over the thickness of a tire, the known first-order global approximation theories (Grigolyuk and
Kulikov, 1988b; Kulikov, 1996; Noor and Burton, 1990) do not provide the reliable prediction of tire
failure, since in these theories the transverse shear stresses are distributed in the thickness direction ac-
cording to the simplest parabolic law.

6. Conclusion

The refined first-order global approximation theory of prestressed multilayered anisotropic shells has
been developed. The effects of the laminated anisotropic material response, initially stressed state response,
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geometrical non-linearity, transverse shear and transverse normal strains are included. This theory is based
on the refined kinematic Timoshenko hypothesis adopted for the displacement vector. As unknown
functions, the tangential and transverse displacements of the face surfaces of the shell have been chosen.
Such choice of unknowns allows as much as possible to algorithmize the computational modeling of a series
of important shell problems. The developed theory can be used for solving the shell problems where the
above effects are significant. Such problems can be met in many fields of the engineering science and es-
pecially in the tire mechanics.

The governing equations of the theory of prestressed multilayered anisotropic shells have been obtained
by using the principle of the virtual work and well-known partially non-linear Novozhilov’s strain—dis-
placement relationships. It is important that the equilibrium equations of the three-dimensional non-linear
elasticity theory are satisfied pointwise into the shell body.

Two computational models for solving the axisymmetric and non-axisymmetric problems of prestressed
multilayered anisotropic shells of revolution have been presented. The first computational model is based
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on the Newton-Raphson method and the incremental method by using the discrete orthogonalization
method. For example, a relatively simple problem of the non-linear axisymmetric response of the aniso-
tropic bias-ply tire has been solved. The tire is modeled by the four-layered cross-ply toroidal shell subjected
to inflation pressure. This non-linear problem has been solved by using the Newton—-Raphson method and
the incremental method. It has been shown that both numerical solutions give similar results, excepting the
values of the transverse shear stresses at the inner surface of a tire. It has also been established that ne-
glecting the effects of anisotropy, and geometrical non-linearity can lead to an incorrect description of the
stress field in cross-ply toroidal shells.

The second computational model is based on the expansion of the unknown functions and external loads
in the Fourier series in the circumferential coordinate, and using the fast Fourier transform. After sepa-
ration of variables on sines and cosines, two systems of ordinary differential equations have been derived.
These systems have also been solved by using the discrete orthogonalization method. As an example, the
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non-axisymmetric response of the prestressed anisotropic bias-ply tire has been studied. The tire is modeled
by the four-layered cross-ply toroidal shell subjected to inflation pressure and localized loading, simulating
contact pressure and acting on the outer surface.
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